Note

Gas-liquid chromatography and mass spectrometry of trimethylsilyl ethers and butaneboronate—trimethylsilyl derivatives of polyhydroxyalkylpyrazines

HIRONOBU TSUCHIDA, KAZUNRI KITAMURA, MASAHIKO KOMOTO,

Department of Agricultural Chemistry, Faculty of Agriculture, Kobe University, Kobe (Japan)

AND NORIMI AKIMORI

Application Laboratory, Naka Works. Hitachi Ltd., Katsuta, Ibaraki (Japan)

(Received August 30th, 1977; accepted for publication in revised form, February 14th, 1978)

It is generally known that sugars react with ammonia to produce pyrazine compounds¹. At least fifteen sugar-derived alkylpyrazines have been identified^{2,3}. Only the following polyhydroxyalkylpyrazines, however, have been identified: 5-(D-arabino-tetrahydroxybutyl)-2-methylpyrazine⁴, 6-(D-arabino-tetrahydroxybutyl)-2-methylpyrazine⁵, 2-(D-arabino-tetrahydroxybutyl)-3-(D-erythro-trihydroxypropyl)-2-methylpyrazine⁵, 2-(D-arabino-tetrahydroxybutyl)-5-(D-erythro-2,3,4-trihydroxybutyl) pyrazine (deoxyfructosazine)^{6,8}, 2-(D-arabino-tetrahydroxybutyl)-6-(D-erythro-2,3,4-trihydroxybutyl)pyrazine^{7,8}, 2,5-di-(D-arabino-tetrahydroxybutyl)pyrazine (fructosazine)⁹⁻¹¹, 2-(D-glycero-2,3-dihydroxypropyl)-5-(D-threo-trihydroxypropyl)pyrazine¹², 2-(D-glycero-2,3-dihydroxypropyl)-6-(D-threo-trihydroxypropyl)pyrazine¹³, 2,5-di-(D-threo-trihydroxypropyl)pyrazine¹⁴ and 2,6-di-(D-threo-trihydroxypropyl)pyrazine¹⁴.

Our studies on the formation of polyhydroxyalkylpyrazines from the reaction of sugars with ammonia in weakly acidic medium showed that two (1-deoxypolyhydroxyalkyl)pyrazine isomers, such as deoxyfructosazine and its 6-isomer, were abundantly formed, but other homologues were detected only in trace amounts. However, in an alkaline medium, several kinds of unknown polyhydroxyalkylpyrazines were produced, probably from alkaline degradation-products of reducing sugars 1.5.

Hitherto, paper chromatography^{4,8} and ion-exchange chromatography⁸ have been used to separate and identify polyhydroxyalkylpyrazines. As it is difficult to separate individual compounds from a mixture containing several homologous members by these techniques, a combination of these methods with g.l.c.-m.s. analysis was investigated. Although a number of g.l.c.-m.s. analyses of trimethylsilyl ethers and butaneboronate-trimethylsilyl derivatives of carbohydrates and glycitols have been reported¹⁶⁻²¹, corresponding data for derivatives of polyhydroxyalkylpyrazines have not been published.

The trimethylsilyl ethers and butaneboronate-trimethylsilyl derivatives of the nine polyhydroxyalkylpyrazines 1-9 were prepared, and these derivatives were examined by g.l.c. The trimethylsilyl ethers gave, respectively, a single peak on chromatogram, and the retention time of each peak was different (Table I). On the other hand, the butaneboronate-trimethylsilyl derivatives showed some minor peaks, in addition to the main peak, except three perbutaneboronates of 1, 2, and 9 (Table I), which are devoid of trimethylsilyl groups.

TABLE I

RETENTION TIMES OF TRIMETHYLSILYL ETHERS AND BUTANEBORONATE—TRIMETHYLSILYL DERIVATIVES
OF POLYHYDROXYALKYLPYRAZINES

Polyhydroxyalkyl-pyrazines	Retention time of derivatives (min)		
	Me ₃ Si	BuBO ₃ -Me ₃ Si	
5-(D-arabino-Tetrahydroxybutyl)-2-methyl-(1)	5.50	4.25	
6-(D-arabino-Tetrahydroxybutyl)-2-methyl (2)	5.27	4.25	
2-(D-glycero-2,3-Dihydroxypropyl)-5-(D-threo- trihydroxypropyl)- (3)	11.40	9.25°. 8.10	
2-(D-glycero-2.3-Dihydroxypropyl)-6-(D-threo- trihydroxypropyl)- (4)	10.25	8.00°, 7.25	
2,5-Di-(D-threo-trihydroxypropyl)- (5)	12.40	11.25°, 13.10	
2,6-Di-(p-threo-trihydroxypropyl)- (6)	11.50	10.25°, 11.75	
2-(D-arabino-Tetrahydroxybutyl)-5-(D-erythro-2,3,4-trihydroxybutyl)- (7)	15.65	15.50°, 15.20	
2-(D-arabino-Tetrahydroxybutyl)-6-(D-erythro-2,3,4-trihydroxybutyl)- (8)	15.42	14.25°, 13.96	
2,5-Di-(D-arabino-tetrahydroxybutyl)- (9)	16.62	17.50	

[&]quot;Main peak.

Scheme 1. Fragmentation patterns of the trimethylsilyl ethers of 1-9.

The trimethylsilyl and butaneboronate-trimethylsilyl derivatives of 1-9 were subjected to g.l.c.-m.s. analysis. The mass spectral data of the trimethylsilyl derivatives showed the typical fragmentation of pertrimethylsilyl ethers of polyhydroxyalkyl chains and stability of the pyrazine nucleus towards electron bombardment (see Scheme 1), the major fragment ions being formed by the cleavage of the pertrimethylsilyl ethers of polyhydroxyalkyl chains (Tables II-VI). The main peaks are those formed by assuming β -cleavage of the polytrimethylsilyloxyalkyl chain; for the trimethylsilyl derivatives of 3, 4, 5 and 6, ions at m/e 205 and m/e (M-204) are abundant, and for the trimethylsilyl derivatives of 1, 2, 7, 8, and 9, ions at m/e 217, m/e 307, and m/e (M-306) are the main fragments. It is not possible to assert whether those main peaks are formed by a McLafferty rearrangement rather than by a simple β -cleavage. A γ -fission is reflected by the presence of ions at m/e (M-103) (for the trimethylsilyl derivatives of 1, 2, 7, 8 and 9), whereas α -fission-fragments are not evident.

TABLE II $\begin{array}{l} \text{Major fragments resulting from electron-impact ionization of the irimethylsilyl ethers of 1 and 2} \\ \end{array}$

m/e	Intensii	y (%)			Assignments
	Me ₃ Si ether of 1		Me ₃ Si ether of 2		-
	20 eV	70 eV	20 eV	70 eV	
502	28.7	5.0	12.2	4.1	М-
487	11.9	2.6	7.8	3.4	$M - CH_3$
323	55.5	1.5	5.2	1.4	$M - (Me_3SiOH + Me_3SiO^+)$
307	100.0	25.2	63.9	18.8	$CH_2(OSiMe_3)-CH(OSiMe_3)-CH(OSiMe_3)$
297	5.9		5.7		$M - CH_2(OSiMe_3) - CH(OSiMe_3)$
277	12.9	2.7	13.9	3.4	$m/e 307 - 2CH_3$
268	32.7	15.5	31.7	8.6	$M = [CH_2(OSiMe_3) - CH(OSiMe_3) + C_2H_5]$
217	63.4	34. <i>5</i>	76.1	21.0	CH(OSiMe ₃)=CH-CH(OSiMe ₃)
205	10.9	7.3	10.9	3.4	CH ₂ (OSiMe ₃)-CH(OSiMe ₃)
196	54.5	5.7	21.7	6.0	$M - CH(OSiMe_3) = C(OSiMe_3) - CH_2(OSiMe)$
189	13.9	5.6	8.7	3.0	CH ₂ (OSiMe ₃)-CH(OSiMe)=CH ₂
147	6.9	21.6	16.1	17.8	He₃Si-O-SiMe₂
103	90.7	60.8	0.001	42.2	Me ₃ SiOCH ₂
73	12.9	100.0	22.6	100.0	+ Me₃Si

TABLE III

MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE TRIMETHYLSILYL ETHERS OF $\bf 3$ AND $\bf 4$

m/e	Intensit	y (%)			Assignments
	Me ₃ Si ether of 3		Me ₃ Si ether of 4		
	20 eV	70 eV	20 eV	70 eV	
604	37.4	4.8	23.0	4.2	M
589	24.2	6.0	10.0	2.9	$M - \overset{+}{C}H_3$
514	8.0	1.2	3.3	0.4	M-Me ₃ SiOH
501	7.7	2.0	5.3	0.9	M – Me ₃ SiOCH ₂
472	10.5	2.4	13.8	2.9	$M = [Me_3SiOCH_2 + \overset{+}{C}_2H_5]$
400	100.0	24.6	100.0	14.6	$M - [CH(OSiMe_3) - CH(OSiMe_3)]$
310	10.1	3.2	10.5	1.3	m/e 400 – Me ₃ SiOH
205	63.6	27.8	76.6	17.9	CH ₂ (OSiMe ₃)-CH(OSiMe ₃)
147	10.1	25.4	18.1	27.0	Me₃Si-O-SiMe₂
117	7.7	13.5	18.1	12.4	
103	2.4	5.7	5.5	6.2	He₃SiOCH₂
73	5.7	100.0	11.8	100.0	Me ₃ Si

The major fragments resulting from electron-impact ionization of the butaneboronate-trimethylsilyl derivatives of 2-9 (see Scheme 2) are assigned as shown in Tables VII-XI. As expected, the derivatives of compounds possessing pairs of hydroxyl groups able to form perboronate cyclic esters, such as 1, 2, and 9, showed the absence of a trimethylsilyl group [lack of ions at m/e 73, 103, M – 90 (or 89), and M-103], and the molecular ions agreed with those of perbutaneboronates (M^{\dagger} 346 and M[±] 584, respectively). On the other hand, the derivatives of 3, 4, 5, 6, 7, and 8 that have a polyhydroxyalkyl chain containing an odd number of hydroxyl groups showed the presence of a trimethylsilyl group [presence of ions at m/e 73, 89 (or 90), or 103, or both] in addition to the boronate cycle. Comparison of the structures of the compounds possessing substituent b (3, 4, 5, and 6) with those of the compounds having substituent c (7 and 8) showed that the former compounds would predominantly form a 1,2-boronate cycle, leaving free the terminal primary alcohol group, whereas the latter compounds would mainly give a 3,4-boronate cycle involving the terminal primary alcohol group. This observation suggests that the formation of the boronate cycle probably depends on the conformation of each substituent.

NOTE 554

Scheme 2. Fragmentation patterns of perbutaneboronate and butaneboronate-trimethylsily derivatives of 2-9.

TABLE IV

MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE

TRIMETHYLSILYL ETHERS OF 5 AND 6

m/e	Intensit	y (%)			Assigments
	Me ₃ Si ether of 5		Me ₃ Si ether of 6		-
	20 eV	70 eV	20 eV	70 eV	
692	22.5		33.9	7.8	M
677	15.0		14.6	6.6	$M - \overset{\leftarrow}{C}H_3$
560	4.5		20.8	1.4	$M - Me_3SiO\overset{\div}{C}H_2$
488	37.5		85.9	12.8	$M - CH(OSiMe_3) = CH(OSiMe_3)$
398	13.8		4.2	3.9	$M = [CH(OSiMe_3) = CH(OSiMe) + (CH_3)_3SiOH]$
355	7.5		5.2	3.3	
295	27.0		15.6	9.5	m/e 488 – Me ₃ SiOCH ₂
283	67.5		5.2	23.9	m/e 488 – CH ₂ (OSiMe ₃)–CH(OSiMe ₃)
205	100.0		100.0	36.5	$CH_2(OSiMe_3)$ - $CH(OSiMe_3)$
147	21.3		26.0	26.8	$Me_3Si-O-SiMe_2$
117	15.0		20.8	16.6	
103	5.5		9.4	4.3	Me ₃ SiOCH ₂
73	11.3		15.6	100.0	Me ₃ Si

EXPERIMENTAL

Materials. — 5-(p-arabino-Tetrahydroxybutyl)-2-methylpyrazine (1) and 6-(p-arabino-tetrahydroxybutyl)-2-methylpyrazine (2) were prepared by the method of Hough et al.⁴, and 2,5-di-(p-arabino-tetrahydroxybutyl)pyrazine (9) by that of Fujii et al.²². 2-(p-glycero-2,3-Dihydroxypropyl)-5-(p-threo-trihydroxypropyl)pyrazine¹² (3), 2-(p-glycero-2,3-dihydroxypropyl)-6-(p-threo-trihydroxypropyl)pyrazine¹² (4), 2,5-di-(p-threo-trihydroxypropyl)pyrazine¹⁴ (5), 2,6-di-(p-threo-trihydroxypropyl)pyrazine¹⁴ (6), 2-(p-arabino-tetrahydroxybutyl)-5-(p-erythro-2,3,4-trihydroxybutyl)pyrazine⁸ (7), and 2-(p-arabino-tetrahydroxybutyl)-6-(p-erythro-2,3,4-trihydroxybutyl)pyrazine⁸ (8) were prepared as previously described.

Pertrimethylsilyl ether of polyhydroxyalkylpyrazines. — These ethers were prepared by a modification of the method of Sweeley et al.²³: each polyhydroxyalkylpyrazine compound (10 mg) was dissolved in N,N-dimethylformamide (0.5 ml) and hexamethyldisilazane (0.2 ml), followed by addition of chlorotrimethylsilane (0.1 ml). The solution was heated for 3 min at 100° in a sealed tube, and then the solution was

TABLE V

MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE
TRIMETHYLSILYL ETHERS OF 7 AND 8

m/e	Intensity (%)				Assignments
	Me ₃ Si ether of 7		Me ₃ Si ether of 8		
	20 eV	70 eV	20 eV	70 eV	
808	30.0	4.4	80.0	4.9	М
793	14.5	3.0	21.5	1.7	$M - CH_3$
603	4.5	1.2	8.5	0.7	$M - CH_2(OSiMe_3) - CH(OSiMe_3)$
574	22.9	3.8	70.8	7.3	M - [CH2(OSiMe3) - CH(OSiMe3) + C2H5]
502	13.1	2.1	38.5	3.9	$M - CH(OSiMe_3) = C(OSiMe_3) - CH_2(OSiMe_3)$
307	100.0	18.5	100.0	12.7	CH ₂ (OSiMe ₃)-CH(OSiMe ₃)-CH(OSiMe ₃)
277	7.1		10.8		$m/e 307 - 2\overset{+}{\text{CH}}_3$
217	56.0	21.0	76.9	17.8	CH(OSìMe3)=CH-CH(OSiMe3)
205	4.8	14.0	11.5	12.7	$CH_2(OSiMe_3)$ -CH(OSiMe ₃)
189	2.6		4.3		$m/e 205 - CH_4$
147	2.0	23.4	4.6	25.4	Me₃Si-O-SiMe₂
103	30.4	44.4	50.0	37.6	Me₃SiOCH₂
73	2.6	100.0	5.4	100.0	+ Me₃Si

evaporated in vacuo in a desiccator. The residue was dissolved in hexane (0.5 ml) and analyzed by g.l.c. and g.l.c.-m.s.

Butaneboronate-trimethylsilyl derivatives of polyhydroxyalkylpyrazines. — The butaneboronate-trimethylsilyl derivatives of 1-9 were prepared by the method of Wood et al. 17. Each compound (10 mg) was dissolved in anhydrous pyridine (0.5 ml), and butaneboronic acid (12.5 mg) was added to the solution. The solution was heated for 10 min at 100° in a sealed tube. After the reaction mixture had cooled, hexamethyldisilazane (0.4 ml) and chlorotrimethylsilane (0.2 ml) were added. The solvent was evaporated in a desiccator under reduced pressure, and the residue dissolved in a small amount of ether and analyzed by g.l.c. and g.l.c.-m.s.

Gas-liquid chromatography. — G.l.c. was performed with a Shimazu Model GC-6A gas chromatograph equipped with a glass column $(0.3 \times 100 \text{ cm})$ of 1% Silicone OV-1 on Anachrom SD (100–110 mesh). The oven temperature was programmed to increase at a rate of 6° per min from 140° to 270°. Injection and detector temperatures were held constant at 290°.

Combined gas-liquid chromatography-mass spectrometry. — G.l.c.-m.s. analysis was performed with a Hitachi Model RMU-6MG gas chromatograph-mass spectro-

TABLE VI MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE TRIMETHYLSILYL ETHER OF 9

m/e	Intensity (%)		Assignments
	20 eV	70 eV	
896	25.1	1.0	М
881	6.0	0.8	$M - \overset{+}{C}H_3$
706	4.0		$M - Me_3SiOH$
662	35.8	1.1	M - [CH2(OSiMe3) - CH(OSiMe3) + C2H5]
590	14.2	0.5	$M - CH_2(OSiMe_3) = C(OSiMe_3) - CH_2(OSiMe_3)$
307	100.0	18.3	CH2(OSiMe3)-CH(OSiMe3)-CH(OSiMe3)
277	10.0		$m/e 307 - C_2H_6$
217	89.5	22.7	$CH(OSiMe_3)=CH-CH(OSiMe_3)$
205	16.3	11.9	CH2(OSiMe3)-CH(OSiMe3)
147	4.5	22.7	$Me_3Si-O-Si(CH_3)_2$
103	69.8	58.7	Me₃SiOCH₂
73	8.0	100.0	+ Me₃Si

meter using an all glass jet separator as the g.l.c.-m.s. interface. The gas chromatographic conditions were the same as those just described. The interface temperature was 300°. The mass spectrometer was operated under the following conditions: ionizing electron energy of 20 or 70 eV, ion accelerating voltage of 3.2 kV (m/e max. 1500), total emission of 100 μ A, and ion source temperature of 180°.

TABLE VII $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabula$

m/e	Intensity (%) (20 eV)	Assignments
346	33.6	м
317	7.1	$M - \dot{C}_2 H_5$ (M – 29)
304	16.1	$M - C_3H_6$ (M - 42)
289	43.6	$M - \dot{C}_4 H_9 \qquad (M - 57)$
262	34.8	$M - (C_4H_9)BO (M-84)$
245	27.4	M ~ (C₄H₂)B-O (M - 101) (OH)
219	100.0	M - CH ₂ CH (M - 127)
205	33.6	m/e 262 - C ₄ H ₉
190	61.3	m/e 219 - C ₂ H ₅ CH ₃ -C N C - C = CH
161	27.4	m/e 190 - C ₂ H ₅
123	25.8	CH ₃ -C CH O+ (M - 223)
57	12.3	+ C ₄ H ₉

TABLE VIII

MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE BUTANEBORONATE—TRIMETHYLSILYL DERIVATIVES OF 3 AND 4

m/e	Intensity (%) (20 eV)		Assignments
	Deriv. of 3	Deriv. of 4	
448	4.1	9.6	м .
433	16.3	20.9	$M - \dot{C}H_3$ (M – 15)
391		4.8	$M - \dot{C}_4 H_9 (M - 57)$
358	6.0	5.7	M - Me ₃ SiOH (M - 90)
345	25.1	44.9	$M - Me_3SiOCH_2 (M - 103)$
322	100.0	100.0	M - CH = CH (M - 126)
232	12.6	49.2	<i>m</i> e 322 − Me ₃ SıOH
219 207	38.9 4.7	13.8 13.2	<i>m e</i> 322 − Me ₃ S1OC+1 ₂
190	13.3	13.5	m/e 219 - C ₂ H ₅
117		13.5	
103	7.9	10.0	Me ₃ S₁OCH ₂ .
73	13.8	18.7	Me ₃ Ši
57	8.6	17.0	+ С ₄ н ₉

TABLE IX $\label{table} \text{MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE } \\ \text{BUTANEBORONATE-TRIMETHYLSILYL DERIVATIVES OF 5 AND 6}$

m/e	Intensity (%) (20 eV)		Assignments
	Deriv. of 5	Deriv. of 6	
536	20.5	43.9	М
521	63.9	56.8	M - CH ₃ (M-15)
494	7.9	16.5	$M - C_3H_6 (M-42)$
479	7.8	9.5	$M - C_4 H_9 (M - 57)$
446	46.5	26.2	M - Me ₃ SiOH (M - 90)
433	100.0	100.0	M - Me ₃ SiOCH ₂ (M - 103)
404 403	20.1 11.5	11.0 51.9	m/e 433 - $C_2^{+}H_5$
343	41.0	40.0	m/e 433 - Me ₃ SiOH
320	38.5	35.0	M - 216 , CH2-CH - CH-CH2OSIMe3
299	23.8	10.3	N B
199	16.4	10.8	- Bu
117	6.0	25.8	
103	78.0	16.9	Me₃SiOCH₂
73	50.0	26.9	+ Me ₃ Si
	- 		

TABLE X

MAJOR FRAGMENTS RESULTING FROM ELECTRON-IMPACT IONIZATION OF THE
BUTANEBORONATE-TRIMETHYLSILYL DERIVATIVES OF 7 AND 8

m/e	Intensity (%) (20 eV)		Assignments
	Deriv. of 7	Deriv. of 8	
574	10.7	20.0	м
559	11.9	13.8	M - CH ₃ (M-15)
517	5.0	16.2	$M - C_4H_9$ (M-57)
490	16.1	42.0	$M - (C_4H_9)BO (M-84)$
475	29.8	32.4	$M - (CH_3)_3 S_1 O^+ (M - 89)$
473	4.0	8.6	м — (C ₄ H ₉) в—О ⁺ (ОН)
447	66.2	29.0	M - CH₂CH (M - 127)
346	100.0	100.0	M - CH ₂ —C=CH (M - 228)
229	21.5	10.0	CH2-CH-CH
149	8.7	17.5	Me₃SiOCH₂
103 73	55.2 20.3	14.0 6.0	Me ₃ \$.

TABLE XI major fragments resulting from electron-impact ionization of the butaneboronate—trimethylsilyl derivative of $\bf 9$

m/e	Intensity (%) (20 eV)	Assignments
584	100.0	М
555	17.0	$M - C_{2}^{\dagger}H_{5} \qquad (M \sim 29)$
542	62.8	M - C ₃ H ₆ (M - 42)
527	65.5	$M - \hat{C}_4 H_9$ (M ~ 59)
500	81.2	M - (C4H9)80 (M - 84)
484	28.0	$M \sim (C_4 H_9) BO_2 (M \sim 100)$
45?	80.5	M - CH ₂ - CH (M - 127)
428	68.4	mje 457 - C ₂ H ₅
399	30.2	m/e 428 - C2H5
361	45.1	CH = C - C CH - CH - CH - CH ₂ CH = C - C CH B Bu B Bu
301	23.3	m/e 428 - CH ₂ -CH
273	15.4	`e_
139	27.9	Bu
117	10.0	m/e 301 - C_2H_4
57	4.5	C ₄ H ₉

æ

NOTE 563

REFERENCES

- 1 K. J. KORT, Adv. Carbohydr. Chem. Biochem., 25 (1970) 311-349.
- 2 M. VAN PRAAG, H. STEIN, AND M. S. TIBBETTS, J. Agric. Food Chem., 16 (1968) 1005-1008.
- 3 T. SHIBAMOTO AND R. A. BERNHARD, J. Agric. Food Chem., 24 (1976) 847-852.
- 4 L. HOUGH, J. K. N. JONES, AND E. L. RICHARDS, J. Chem. Soc., (1952) 3854-3857.
- 5 M. I. TAHA, J. Chem. Soc., (1961) 2468-2472.
- 6 R. Kuhn, G. Krüger, H. J. Haas, and A. Seeliger, Justus Liebigs Ann. Chem., 644 (1961) 122-127.
- 7 E. A. FORLANO AND J. O. DEFERRARI, Carboliydr. Res., 23 (1972) 111-119.
- 8 H. TSUCHIDA, M. KOMOTO, H. KATO, AND M. FUJIMAKI, Agric. Biol. Chem., 37 (1973) 2571-2548.
- 9 C. A. LOBRY DE BRUYN, Rec. Trav. Chem., 18 (1899) 72-76.
- 10 K. STOLTE, Beitr. Chem. Physiol., 11 (1908) 19-25.
- 11 K. MAURER AND B. SCHIEDT, Ber., 68 (1935) 2187-2191.
- 12 H. TSUCHIDA, S. TACHIBANA, AND M. KOMOTO, Agric. Biol. Chem., 40 (1976) 1241-1242.
- 13 E. A. FORLANO AND J. O. DEFERRARI, Carbohydr. Res., 31 (1973) 403-404.
- 14 H. TSUCHIDA, S. OTA, AND M. KOMOTO, Agric. Biol. Chem., in preparation.
- 15 H. TSUCHIDA, M. KOMOTO, H. KATO, AND M. FUJIMAKI, Nippon Nogei Kagaku Kaishi, 50 (1976) 187–189.
- 16 T. C. SMALE AND E. S. WEIGHT, Chem. Commun., (1966) 680-681.
- 17 P. J. WOOD, I. R. SIDDQUI, AND J. WEISZ, Carbohydr. Res., 42 (1975) 1-13.
- 18 V. N. REINHOLD, F. WIRTZ-PEITZ, AND K. BIEMANN, Carbohydr. Res., 37 (1974) 203-221.
- 19 D. C. DeJongh, J. Radford, J. D. Hribar, S. Hanessian, M. Bieber, G. Dawson, and C. C. Sweeley, J. Am. Chem. Soc., 91 (1969) 1728-1740.
- 20 K. HEYNS AND D. MÜLLER, Tetrahedron, 21 (1965) 55-68.
- 21 J. KARLINER, Tetrahedron Lett., (1968) 3545-3548.
- 22 S. Fujii and K. Kushida, J. Org. Chem., 31 (1966) 2239-2241.
- 23 C. C. SWEELEY, R. BENTLEY, M. MAKITA, AND W. W. Wells, J. Am. Chem. Soc., 85 (1963) 2497-2507.